SEMESTRAL EXAMINATION ANALYSIS IV, B. MATH II YEAR II SEMESTER, 2012-2013

Max. you can score: 100 Time limit: 3 hrs. The six questions below carry a total of 110 marks. The maximum you can score is 100. Answer as many questions as you can.

1. Let $f:(a,b) \to \mathbb{R}$ be a continuous function such that $f(\frac{x+y}{2}) \leq \frac{f(x)+f(y)}{2}$ $\forall x, y \in (a, b)$. Show that f is convex. [20]

2. Let $\{f_n\}$ be a sequence of maps from \mathbb{R} to \mathbb{R} which is equicontinuous and uniformly bounded. Prove that there is a subsequence $\{f_{n_j}\}$ which converges pointwise to a continuous function on \mathbb{R} . [20]

3. Let $\{f_n\}$ be a sequence of continuous functions from \mathbb{R} to \mathbb{R} which is pointwise bounded. Prove that for any a < b the interval [a, b] contains an open interval on which the sequence is uniformly bounded. [15]

4. Let $f(x) = |\sin x|, x \in \mathbb{R}$. Write down the Fourier series of f and prove that it converges to f at every point. [20]

5. Let $f(c) = \sum_{n=0}^{\infty} a_n c^n$ for all $c \in \mathbb{C}$ with $|c| \le 1$ where $\{a_n\}$ is a sequence of

complex numbers such that $\{n^2 a_n\}$ is bounded. Show that f(c) = 0 whenever |c| = 1 implies f(c) = 0 for all $c \in \mathbb{C}$ with $|c| \le 1$. [15]

6. Prove that
$$\cos x = \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{n \sin(2nx)}{4n^2 - 1}$$
 if $0 < x < \pi$. [20]